A Cooperative Evolutionary System for Designing Neural Networks
نویسندگان
چکیده
A novel cooperative evolutionary system, i.e., CGPNN, for automatic design artificial neural networks (ANN’s) is presented where ANN’s structure and parameters are tuned simultaneously. The algorithms used in CGPNN combine genetic algorithm (GA) and particle swarm optimization (PSO) on the basis of a direct encoding scheme. In CGPNN, standard (real-coded) PSO is employed to training ANN’s free parameters (weights and bias) and binarycoded GA is used to find optimal ANN’s structure. In the simulation part, CGPNN is applied to the predication of tool life. The experimental results show that CGPNN has good accuracy and generalization ability in comparison with other algorithms.
منابع مشابه
Evolving a Cooperative Population of Neural Networks by Minimizing Mutual Information
Evolutionary ensembles with negative correlation learning (EENCL) is an evolutionary learning system for learning and designing neural network ensembles [1]. The fitness sharing used in EENCL was based on the idea of “covering” the same training patterns by shared individuals. This paper explores connection between fitness sharing and information concept, and introduces mutual information into ...
متن کاملDesigning an expert system for differential diagnosis of β-Thalassemia minor and Iron-Deficiency anemia using neural network
Introduction: Artificial neural networks are a type of systems that use very complex technologies and non-algorithmic solutions for problem solving. These characteristics make them suitable for various medical applications. This study set out to investigate the application of artificial neural networks for differential diagnosis of thalassemia minor and iron-deficiency anemia. Methods: It is...
متن کاملAdaptive Group Organization Cooperative Evolutionary Algorithm for TSK-type Neural Fuzzy Networks Design
This paper proposes a novel adaptive group organization cooperative evolutionary algorithm (AGOCEA) for TSK-type neural fuzzy networks design. The proposed AGOCEA uses group-based cooperative evolutionary algorithm and selforganizing technique to automatically design neural fuzzy networks. The group-based evolutionary divided populations to several groups and each group can evolve itself. In th...
متن کاملRobust Fault Detection on Boiler-turbine Unit Actuators Using Dynamic Neural Networks
Due to the important role of the boiler-turbine units in industries and electricity generation, it is important to diagnose different types of faults in different parts of boiler-turbine system. Different parts of a boiler-turbine system like the sensor or actuator or plant can be affected by various types of faults. In this paper, the effects of the occurrence of faults on the actuators are in...
متن کامل